目的 探究84消毒液对304不锈钢腐蚀行为的影响及其腐蚀机理。方法 采用数码相机和三维视频显微镜对304不锈钢进行宏观与微观腐蚀形貌观察,结合电化学测试分析研究84消毒液对304不锈钢腐蚀行为的影响。结果 在喷洒试验初期,在不锈钢表面可观察到少量较浅的点蚀坑生成,腐蚀电位升高,腐蚀电流密度下降。随着喷洒时间的延长,试验后期,点蚀坑增加和变大,腐蚀电位降低,腐蚀电流密度提高,304不锈钢的耐腐蚀性能降低,腐蚀速率提高。结论 大气环境下喷洒84消毒液,304不锈钢发生局部腐蚀。试验初期,NaClO促进了不锈钢钝化膜的形成,腐蚀速率下降。随着喷洒时间的延长,NaClO被还原形成的Cl-,使钝化膜发生破裂,促进了不锈钢的点蚀。
Abstract
The work aims to explore the corrosion behavior and mechanism of 304 stainless steel (304SS) in 84 disinfectant. The macroscopic and microscopic corrosion morphology of 304 stainless steel was observed by digital camera and three-dimension microscope. The effect of 84 disinfectant on corrosion behavior of 304 stainless steel was studied in combination with electrochemical analysis. At the initial stage of spraying experiment, a small number of shallow pitting pits could be observed on the stainless steel surface, the corrosion potential increased, and the corrosion current density decreased. With the extension of spraying time, in the later period of the experiment, the pitting pit increased and became larger, the corrosion potential decreased, the corrosion current density increased, the corrosion resistance of 304 stainless steel decreased, and the corrosion rate increased. When spraying 84 disinfectant in atmospheric environment, 304 stainless steel has local corrosion. At the beginning of the experiment, NaClO promotes the formation of stainless steel passivation films, and the corrosion rate decreases. With the extension of spraying time, the reduction of NaClO to Cl- causes the passivation film to break and promotes the pitting corrosion of stainless steel.
关键词
84消毒液 /
304不锈钢 /
腐蚀 /
次氯酸钠 /
点蚀
Key words
84 disinfectant /
304 stainless steel /
corrosion /
NaClO /
pitting corrosion
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张天翼. 洗护市场消毒技术原理与应用[J]. 中国洗涤用品工业, 2021(9): 56-63.
ZHANG T Y.Principle and Application of Disinfection Technology in Laundry Care[J]. China Cleaning Industry, 2021(9): 56-63.
[2] 刘元戎, 屈智财, 陈晓雪, 等. 84消毒液稳定性与均一度的基础研究与应用[J]. 中国氯碱, 2022(11): 24-27.
LIU Y R, QU Z C, CHEN X X, et al.Basic Research and Application of 84 Disinfectant Stability and Uniformity[J]. China Chlor-Alkali, 2022(11): 24-27.
[3] 陈宝宝, 雷毅, 蒋丽娟, 等. 两种84消毒液稳定性及杀菌效果观察[J]. 中国消毒学杂志, 2021, 38(12): 890-891.
CHEN B B, LEI Y, JIANG L J, et al.Experimental Observation on Stability and Germicidal Efficacy of Two Kinds of Disinfectants[J]. Chinese Journal of Disinfection, 2021, 38(12): 890-891.
[4] 杜楠, 叶超, 田文明, 等. 304不锈钢点蚀行为的电化学阻抗谱研究[J]. 材料工程, 2014, 42(6): 68-73.
DU N, YE C, TIAN W M, et al.304 Stainless Steel Pitting Behavior by Means of Electrochemical Impedance Spectroscopy[J]. Journal of Materials Engineering, 2014, 42(6): 68-73.
[5] EL-EGAMY S S, BADAWAY W A. Passivity and Passivity Breakdown of 304 Stainless Steel in Alkaline Sodium Sulphate Solutions[J]. Journal of Applied Electrochemistry, 2004, 34(11): 1153-1158.
[6] GEJENDHIRAN S, KARPAGARAJ A, MANIVANNAN S, et al.Experimental Study on Mechanical, Damping and Corrosion Properties of Inconel 718 Hard-Faced Stainless Steel 304 Using Cold Metal Transfer[J]. Engineering Failure Analysis, 2024, 156: 107871.
[7] LEE J Y, KIM D H, CHO Y T, et al.A Study on the Characteristics of 304 Stainless Steel According to the Water Temperature Changes in Underwater Laser Beam Machining[J]. Materials, 2023, 16(23): 7463.
[8] 邓俊豪, 王贵, 胡杰珍, 等. 基于电化学噪声研究模拟海洋大气环境下304不锈钢的点蚀行为[J]. 电化学, 2020, 26(2): 298-307.
DENG J H, WANG G, HU J Z, et al.Pitting Behavior of Stainless Steel in Simulated Marine Atmosphere Based on Electrochemical Noise[J]. Journal of Electrochemistry, 2020, 26(2): 298-307.
[9] 尹程辉, 潘吉林, 陈俊航, 等. 热带海洋大气环境下不锈钢的腐蚀寿命评估[J]. 表面技术, 2022, 51(4): 183-193.
YIN C H, PAN J L, CHEN J H, et al.Corrosion Life Assessment of Stainless Steel in Tropical Marine Atmosphere[J]. Surface Technology, 2022, 51(4): 183-193.
[10] 陈昊, 周学杰, 吴军, 等. 2种表面处理304不锈钢在文昌和武汉大气环境中的腐蚀行为研究[J]. 材料保护, 2021, 54(5): 35-41.
CHEN H, ZHOU X J, WU J, et al.Corrosion Behavior of 304 Stainless Steel with Two Kinds of Different Surface Treatments in Wenchang and Wuhan Atmospheric Environment[J]. Materials Protection, 2021, 54(5): 35-41.
[11] 魏欣. 钝态金属在氯离子环境中的局部腐蚀行为[D]. 大连: 大连理工大学, 2013.
WEI X.Localized Corrosion Behaviors of Passive Metals in Chloride Environment[D]. Dalian: Dalian University of Technology, 2013.
[12] 尹学涛, 李丽, 周学杰, 等. A7N01S-T5铝合金在84消毒液中的电化学行为[J]. 材料保护, 2020, 53(4): 53-57.
YIN X T, LI L, ZHOU X J, et al.Electrochemical Behavior of A7N01S-T5 Aluminum Alloy in 84 Disinfectant[J]. Materials Protection, 2020, 53(4): 53-57.
[13] 蔚庆玲, 宋应亮, 马轩祥. 山花、84消毒液对Ti-6Al-4V合金表面点蚀的能谱及电镜分析[J]. 实用口腔医学杂志, 2000, 16(5): 357-359.
WEI Q L, SONG Y L, MA X X.Pitting Corrosion of Ti-6Al-4V Alloy in 84 or Shanhua Disinfectant[J]. Journal of Practical Stomatology, 2000, 16(5): 357-359.
[14] 吴小成, 徐燕. 红石牌84消毒液部分性能试验研究[J]. 中国消毒学杂志, 2004, 21(2): 105-108.
WU X C, XU Y.Experimental Study on some Properties of Hong-shi Brand 84 Liquid Disinfectant[J]. Chinese Journal of Disinfection, 2004, 21(2): 105-108.
[15] MONTES J C, HAMDANI F, CREUS J, et al.Impact of Chlorinated Disinfection on Copper Corrosion in Hot Water Systems[J]. Applied Surface Science, 2014, 314: 686-696.
[16] 张艳, 李倩, 王胜刚. 2507双相不锈钢在NaClO溶液中的腐蚀性能[J]. 材料工程, 2016, 44(1): 108-114.
ZHANG Y, LI Q, WANG S G.Corrosion Resistance of 2507 Duplex Stainless Steel in NaClO Solution[J]. Journal of Materials Engineering, 2016, 44(1): 108-114.
[17] 冯淼, 彭靖博, 张钰柱, 等. 2507双相不锈钢在电解海水防污环境中的腐蚀钝化行为[J]. 材料热处理学报, 2023, 44(4): 146-156.
FENG M, PENG J B, ZHANG Y Z, et al.Corrosion and Passivation Behavior of 2507 Duplex Stainless Steel in Electrolytic Seawater Antifouling Environment[J]. Transactions of Materials and Heat Treatment, 2023, 44(4): 146-156.
[18] 陈灏琳, 田一梅, 郭浩, 等. NaClO对再生水球墨铸铁管道腐蚀行为的影响[J]. 腐蚀科学与防护技术, 2017, 29(1): 41-47.
CHEN H L, TIAN Y M, GUO H, et al.Effect of Sodium Hypochlorite on Corrosion Behavior of Ductile Cast Iron Pipe in Reclaimed Water[J]. Corrosion Science and Protection Technology, 2017, 29(1): 41-47.
[19] LI K J, SUN L, CAO W K, et al.Pitting Corrosion of 304 Stainless Steel in Secondary Water Supply System[J]. Corrosion Communications, 2022, 7: 43-50.
[20] CRUZ A C, HERNÁNDEZ L S, GUTIÉRREZ E J. Cyanide-Free Copper-Silver Electroplated Coatings on Carbon Steel Exposed to 5% NaClO Bleacher[J]. Journal of Materials Engineering and Performance, 2023, 32(5): 2432-2444.
[21] 李鑫. 给水金属管材腐蚀特性及其影响因素研究[D]. 西安: 长安大学, 2021.
LI X.Study on Corrosion Characteristics and Influencing Factors of Water Supply Metal Pipes[D]. Xi'an: Changan University, 2021.
[22] 骆鸿. 严酷海洋大气环境下典型不锈钢加速腐蚀环境谱研究[D]. 北京: 北京科技大学, 2013.
LUO H.The accelerated corrosion environment spectrum research of typical stainless steel in severe marineatmosphere[D]. University of Science and Technology Beijing, 2013.
[23] 刘安强. 严酷海洋大气环境与加速试验方法研究[D]. 北京: 北京科技大学, 2012.
LIU A Q.The research on corrosion simulation and accelerated test method in harsh marine atmosphere[D]. University of Science and Technology Beijing, 2012.
[24] 尹相宁. 三种不锈钢供水管材腐蚀性试验研究[D]. 西安: 长安大学, 2021.
YIN X N.Experimental Research on Corrosion of Three Types of Stainless Steel Water Supply Pipes[D]. Xi’an: Changan University, 2021.
[25] 李长岭. 氯离子对不锈钢材料点蚀的影响[J]. 中国氯碱, 2021(9): 20-21.
LI C L.Effect of Chloride Ion on Pitting Corrosion of Stainless Steel[J]. China Chlor-Alkali, 2021(9): 20-21.
基金
广东省自然科学基金项(2021A1515012129); 湛江市科技发展专项(2022A01029)